250. The Interaction of Non-bonding Orbitals in Dicarbonyls: *Ab Initio* Results on Glyoxal

by T.-K. Ha¹)

Laboratorium für Physikalische Chemie der Eidg. Techn. Hochschule, Zürich

and W. Hug

Physikalisch-Chemisches Institut der Universität Zürich

(14. VII. 71)

Zusammenfassung. Die energetische Lage der kanonischen Molekelorbitale von Glyoxal in der trans- und cis-Konformation wurde durch ab initio-Rechnungen bestimmt. Die Wechselwirkung der «nichtbindenden» Orbitale dieser Molekel wird diskutiert.

Until recently spectroscopists have used simple 2p-functions localized on the oxygen atoms to describe the non-bonding orbitals (*n*-orbitals) in dicarbonyl compounds [1]. Molecular orbital calculations [2] of the UV. and circular dichroism spectra by semi-empirical methods including all valency electrons indicate that such a description is, even qualitatively, insufficient. Experimental evidence from photo-electron spectroscopy [3], as well as from electrochroism measurements [4], supports this. However, semi-empirical calculations are in general subject to the arbitrariness

	· · · · · · · · · · · · · · · · · · ·	trans (C _{2h}) b)	$cis(\mathbf{C}_{2v})\mathbf{b})$
MO		$-20.6415 (1 a_g)$	$-20.6464(1a_1)$
		$-20.6415 (1 b_g)$	$-20.6464(1 b_1)$
		$-11.5314(2a_g)$	$-11.5250(2a_1)$
		$-11.5308(2b_g)$	$-11.5244(2b_1)$
		$-1.4876(3 a_g)$	$-1.4847(3a_1)$
		$-1.4620(3b_g)$	$-1.4542(3b_1)$
		$-1.0056 (4 a_g)$	$-1.0133(4a_1)$
		$-0.8689 (4 b_g)$	$- 0.8385 (4b_1)$
		$-0.7604(5a_g)$	$- 0.7946(5a_1)$
		$-0.7113(5b_g)$	$- 0.6826(6a_1)$
		$-0.6632(6a_g)$	$- 0.6721(5b_1)$
	π:	$- 0.6317 (1 a_u)$	$- 0.6269 (1 b_2)$
	n:	$-0.5635(6b_g)$	$-0.5554(6b_1)$
	π :	$- 0.5458 (1 b_u)$	$- 0.5404 (1 a_2)$
	<i>n</i> :	$-$ 0.4768 (7 a_g)	$- 0.4775 (7 a_1)$
$\overline{E_T}$		– 226.24765	- 226.24288

Table 1. Orbital energies in trans- and cis-Glyoxala)

a) Atomic units.

b) For the cis-form as yet unknown, we have chosen the standardized geometry: C-H: 1.08 Å, C-O: 1.22 Å, C-C: 1.5 Å, and <OCH: 120°.</p>

1) To whom inquiries should be addressed.

of the choice of empirical parameters. We have therefore effected an *ab initio* calculation²) on glyoxal, the simplest α -dicarbonyl compound. Such a calculation should provide an unambiguous decision concerning the MO level ordering as well as the energy gap between the non-bonding orbitals.

Ab initio molecular wave-functions have been constructed with Gaussian lobefunctions as a basis set, with an accuracy equivalent to double zeta Slater-type orbitals

		$cis[C_{2v}]$		trans [C ₂ h]	
		symm. (7 <i>a</i> ₁)	anti- symm. (6 <i>b</i> 1)	symm. (7 <i>a</i> _g)	anti- symm. $(6b_g)$
φ_{1s}	(C1)	0.0157	- 0.0334	0.0158	- 0.0345
\$\$15-25	(C1)	0.0007	-0.0017	0.0007	-0.0018
φ_{2s}	(C1)	-0.0433	0.2167	0.0458	0.2217
φ_{2px}	(C1)	0.3351	- 0.0980	0.3324	- 0.0908
φ_{2py}	(C1)	-0.1191	-0.1585	-0.1242	- 0.1551
φ_{2p_z}	(C1)	0.0000	0.0000	0.0000	0.0000
φ_{1s}	(C2)	0.0157	0.0334	0.0158	0.0345
φ_{1s-2s}	(C2)	0.0007	0.0017	0.0007	0.0018
φ_{2s}	(C2)	- 0.0433	-0.2167	-0.0458	-0.2217
φ_{2p_x}	(C2)	- 0.3351	- 0.0980	-0.3324	- 0.0908
φ_{2py}	(C2)	- 0.1191	0.1585	0.1242	- 0.1551
φ_{2p_z}	(C2)	0.0000	0.0000	0.0000	0.0000
φ_{1s}	(O1)	0.0014	- 0.0091	0.0013	- 0.0080
\$\$\varphi_{1s-2s}\$	(O1)	0.0001	- 0.0005	0.0001	- 0.0004
φ_{2s}	(O1)	- 0.0080	0.0627	- 0.0084	0.0593
φ_{2p_X}	(O1)	- 0.5790	0.4941	-0.5871	- 0.4896
φ_{2py}	(O1)	0.2734	0.4505	0.2700	0.4508
φ_{2p_z}	(O1)	0.0000	0.0000	0.0000	0.0000
φ_{1s}	(O2)	0.0014	0.0091	0.0013	0.0080
\	(O2)	0.0001	0.0005	0.0001	0.0004
φ_{25}	(O2)	-0.0080	0.0627	- 0.0084	- 0.0593
$\varphi_{2p_{X}}$	(O2)	0.5790	0.4941	0.5871	- 0.4896
φ_{2py}	(O2)	0.2734	0.4505	- 0.2700	0.4508
φ_{2p_z}	(O2)	0.0000	0.0000	0.0000	0.0000
φ_{H1}		0.2156	0.1619	0.2121	0.1619
$\varphi_{\mathbf{H2}}$		0.2156	- 0.1619	0.2121	- 0.1619
$\varepsilon_i b$		-0.4775	- 0.5554	0.4768	- 0.5635

Table 2. n-Orbitals in Glyoxal^a)

^{a)} $\varphi_{1s}, \varphi_{1s-2s}, \varphi_{2s}$ are the Gaussian group orbital basis set which represent the 1s and 2s Hartree-Fock atomic orbitals. For example the carbon 1s atomic orbital is composed almost entirely of φ_{1s} and the carbon 2s almost entirely of $\varphi_{2s}, \varphi_{1s-2s}$ is intermediate. It is simply an additional basis function that makes possible a more perfect match of the atomic Hartree-Fock solution. The molecule lies in the xy-plane, C—C bond being the x-axis.

b) Atomic units, ε_i is the MO energy.

²) Details on the wave functions and the *cis-trans*-isomerization process will be published elsewhere; *T.-K. Ha*, unpublished results.

[5]. The wave-functions employ 10 spherical *Gaussians* for the 1s and 2s orbitals and 5 pairs of Gaussians for each $2p_x$, $2p_y$, or $2p_z$ orbital of the carbon and oxygen atoms. Each hydrogen 1s orbital is represented by 5 spherical *Gaussians*.

Tab. 1 shows that the four highest occupied MO's are the two *n*- and the two π -orbitals, the sequence being $n-\pi-n-\pi$. We obtain for both *cis*- and *trans*-glyoxal an antisymmetric combination for the *n*-orbital below a symmetric one. The energy gap amounts to 2.36 eV in the *trans*- and 2.12 eV in the *cis*-form. The experimental value from photoelectron spectra is 1.6 eV [3].

The energy gap is nearly independent of the dihedral angle between the two carbonyl groups. A direct interaction between the 2p-orbitals on the oxygen atoms would place the symmetric combination below the antisymmetric one. The distance between the oxygen atoms being rather large in the *trans*-conformation (3.4 Å), we may consider the decrease of the energy gap by 0.24 eV in the *cis*-form to represent a rough measure of the "through space" interaction in *cis*-glyoxal. The value of 0.24 eV seems, however, rather large and considerably exceeds the values estimated from *Slater*-type orbitals [1].

The eigenvectors of the two *n*-orbitals are shown in Tab. 2. The values given provide means for a qualitative understanding of the large energy gap between the two *n*-orbitals: Contour diagrams²) of the electronic charge distribution for these orbitals show that, in contrast to the higher lying orbital, the lower one is devoid of nodes bisecting the C-O bonds.

Based on experimental findings we thus show definitely that the mechanism of the interactions of non-bonding orbitals in dicarbonyl compounds is "through bond" rather than "through space".

We wish to express our sincere appreciation to the ETH-Z computer centre for providing computer time and to the *Swiss National Foundation* for financial support.

BIBLIOGRAPHY

- J. W. Sidman & D. S. McClure, J. Amer. Chem. Soc. 77, 6461 (1955); J. W. Sidman, ibid. 78, 2363, 4567 (1956); J. W. Sidman, J. chem. Physics 27, 429 (1957); J. N. Murrell, 'The Theory of the Electronic Spectra of Organic Molecules', p. 168 Methuen Co. Ltd., London 1963; E. Charney & L. Tsai, to be published in J. Amer. Chem. Soc. (private communication).
- [2] W. Hug & G. Wagnière, Theoret. chim. Acta 18, 57 (1970); J. R. Swenson & R. Hoffmann, Helv. 53, 2331 (1970); W. Hug & G. Wagnière, ibid. 54, 633 (1971).
- [3] D. W. Turner, A. D. Baker, C. Baker & C. R. Brundle, 'Molecular Photoelectron Spectroscopy'
 J. Wiley Sons, Inc., New York 1970; D. O. Cowan, R. Gleiter, J. A. Hashmall, E. Heilbronner & V. Hornung, Angew. Chemie 83, 405 (1971).
- [4] W. Hug, J. Kuhn, K. J. Seibold, H. Labhart & G. Wagnière, Helv. 54, 1451 (1971).
- [5] L.C. Allen, 'Quantum Theory of Atoms, Molecules and Solid State', Ed. P. O. Löwdin, Academic Press, New York 1966.